

ATP SATA3 mSATA Embedded Module Specification

Version 1.0

ATP Electronics, Inc.

CONTENT

Rev	ision History1
1.0	ATP mSATA Embedded Module Overview2
1.1	ATP Product Image2
1.2	Introduction
1.3	Main Features3
2.0	Product Specification
2.1	Block Diagram5
2.2	Environment Specifications5
2.3	IOPS Performance
2.4	Maximum Read/Write Performance6
2.5	Electrical Characteristics
2.6	Reliability6
2.7	Write/Erase Endurance ¹ 7
2.8	Certification and compliance7
3.0	SATA SSD Pin Assignment8
3.1	Pin Location8
3.2	Pin Assignment8
4.0	Command Set
4.1	ATA Command Set10
4.2	Identity Device Data12
4.3	Smart Information15
4.4	SMART Command Transport19
4.5	Set Features19
5.0	Mechanical Information19
5.1	Physical Dimension Specifications19
5.2	Mechanical Form Factor (Units in mm)20

ATP Electronics, Inc.

Disclaimer

ATP Electronics Inc. shall not be liable for any errors or omissions that may appear in this document, and disclaims responsibility for any consequences resulting from the use of the information set forth herein.

ATP may make changes to specifications and product descriptions at any time, without notice. The information in this paper is furnished for informational use only so ATP assumes no responsibility or liability for any errors or inaccuracies that may appear in this document.

All parts of the ATP documentation are protected by copyright law and all rights are reserved. This documentation may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from ATP Electronics, Inc.

The information set forth in this document is considered to be "Proprietary" and "Confidential" property owned by ATP.

© Copyright ATP All rights reserved.

Revision History

Date	Version	Revision History
Jan. 12 th , 2016	1.0	- New BOM Release

1.0 ATP mSATA Embedded Module Overview

1.1 ATP Product Image

Figure 1-1: ATP Product Image (reference only)

Table 1-1: Capacities

ATP P/N	CAPACITY
AF16GSMHI-VADXP	16GB
AF32GSMHI-VADXP	32GB
AF64GSMHI-VACXP	64GB
AF128GSMHI-VACXP	128GB
AF256GSMHI-VAAXP	256GB
AF512GSMHI-VAAXP	512GB

Note: GB = 1,000,000,000 Byte

1.2 Introduction

The ATP mSATA Embedded Module is a high performance and high capacity mass storage solution in Slim form factor. Utilizing MLC (Multi-Level Cell) NAND Flash components provides outstanding performance and proven reliability for products operating.

ATP mSATA Embedded Module is perfect for thin devices, especially networking, thin clients, embedded appliance, and also suitable for industrial applications such as transportation, industrial PC, healthcare, telecommunications, and other harsh environments where data integrity and consistent performance is mission critical.

1.3 Main Features

- Capacity: 16GB~512GB
- MLC (Multi-Level Cell) NAND flash memory
- Operating temperature: 0° C to 70° C
- Maximum performance: Sequential read up to 530 MB/s, sequential write up to 440 MB/s
- JEDEC standard: MO-300A
- Compliant with Serial ATA Revision 3.2
- SATA 6.0Gbps interface and backward compatible with 1.5Gbps and SATA 3Gbps interface rate
- Hardware BCH ECC, correct up to 60-bit ECC per 1024 bytes of data
- SMART function support by ATA CMD
- Enhanced endurance by Global wear-leveling
- AutoRefresh, automatic data protection in read operation
- PowerProtector Gen.2, data integrity under power-cycling
- CE, FCC certification

PowerProtector – Power Cycling Protection

The unstable power conditions of outdoor applications such as transportation, telecommunications/networking and embedded systems run the risk of data loss and drive corruption during a sudden power failure.

A standalone hardware design is the ideal configuration for power backup, ensuring a sufficient amount of reserve power during any power abnormalities and minimizing the consequent host re-designs for adding new features. During a sudden power failure, the abnormality is discovered by a power loss detection circuit and activates the power protection mechanism. The device then draws power from power protection reservoir, where the reserve power is stored. The reserve power gives enough time for the flash device to conclude the last writing command without losing any data.

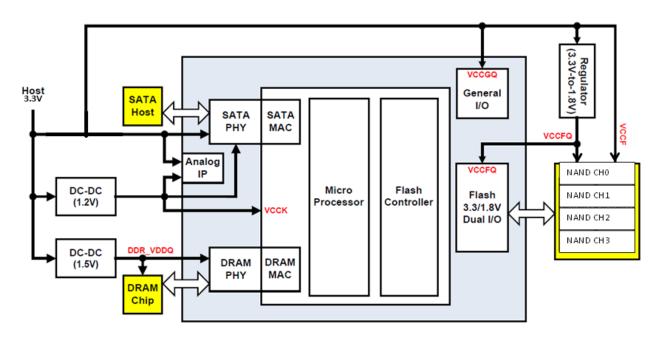
AutoRefresh Technology – Data Integrity Protection

Over time the error bits accumulate to the threshold in the flash memory cell and eventually become uncorrectable despite using the ECC engine. In the traditional handling method, the data is moved to a different location in the flash memory; despite the corrupted data is beyond repaired before the transition.

The situation is worse in frequent read applications, such as navigation systems or OS boot-up devices. The map or operation system is preloaded into the storage media and there may be one time write and following by read operation only. Read disturbance is the result of electrical interference from multiple read operations in surrounding pages. After NAND flash accumulates 100,000 read cycles, uncorrectable ECC errors may occur in the affected pages which results in data failure in the same block.

To prevent data corruption, ATP memory product monitors the error bit levels in each read operation; when it reaches the preset threshold value, AutoRefresh is activated by programming the data into another block before the data is corrupted. After the re-programming operation is completed, the controller reads the data and compares the data/parity to ensure data integrity.

Owing to different user experiences, please contact ATP for AutoRefresh in real applications.


2.0 Product Specification

2.1 Block Diagram

ATP mSATA Embedded Module consists of below functional blocks. The advanced

architecture is optimized to provide highest data reliability and transfer performance.

2.2 Environment Specifications

Table 2-1

Туре		Standard
Tomporatura	Operating	0°C to 70°C
Temperature	Non-Operating	-40°C to 85°C
Humidity	Operating	25°C, 8% to 95%, noncondensing
Humaity	Non-Operating	40°C, 8% to 93%, noncondensing
Vibration	Non-Operating	sine 16.4G, 10~2000Hz
Shock	Non-Operating	Half sine 1500G/0.5ms
Altitude	Operating	80,000 feet Max.
Annuae	Non-Operating	80,000 feet Max.

2.3 IOPS Performance

Table 2-2

Туре	Value
4K Random Read IOPS	Up to 72,040 IOPS

Note: Input/Output operations per second tested by Crystal Disk Mark on 512GB device.

2.4 Maximum Read/Write Performance

Table 2-3								
	Туре	16GB	32GB	64GB	128GB	256GB	512GB	
Crystal Disk	Sequential Read (MB/s)	110	220	400	520	520	530	
Mark	Sequential Write(MB/s)	20	40	75	130	260	440	

- -

2.5 Electrical Characteristics

Table 2-4						
Parameter	Symbol	Min	Тур	Max	Unit	Remark
Supply voltage	V _{CC}	3.15	3.3	3.45	V	

Table2-5

Parameter	Symbol	Min	Тур	Max	Unit	Remark
Sustained write power	Pw	0.50	3.80	5.65	W	RMS value
Sustained read power	P _R	0.50	1.65	2.75	W	RMS value
Idle power	Ps	0.30	0.35	0.45	W	RMS value

2.6 Reliability

Table2-6				
Туре	Value			
MTBF (@ 25°C) ¹	2,000,000 hours			
Data Retention (@ 55°C)	5 years (with 10% P/E cycle)			

. .

Notes: The Mean Time between Failures (MTBF) is calculated using a prediction methodology, Telcordia SR-332, which based on reliability

data of the individual components in the mSATA. It assumes nominal voltage, with all other parameters within specified range.

2.7 Write/Erase Endurance¹

Table 2-7

Туре	Value			
	Enhanced global dynamic and static wear-leveling			
Endurance Technology	algorithm			
	MLC Flash block: 3,000 P/E cycles			
	16GB: 6.85 TB Random write			
	19.2 TB Sequential write			
	32GB: 13.71 TB Random write			
	38.4 TB Sequential write			
	64GB: 27.43 TB Random write			
SSD Endurance	76.8 TB Sequential write			
SSD Endurance	128GB: 54.86 TB Random write			
	153.6 TB Sequential write			
	256GB: 109.7 TB Random write			
	307.2 TB Sequential write			
	512GB: 219.43 TB Random write			
	614.4 TB Sequential write			

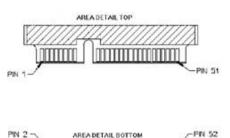
Note:

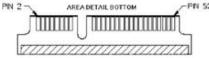
- Endurance for the mSATA can be predicted based on the usage conditions applied to the device, the internal NAND component cycles, the write amplification factor, and the wear leveling efficiency of the drive. TBW may vary depending on application, please contact ATP for TCO evaluation if specific usage type applies.
- 2. The random endurance is based on JEDEC219 enterprise workload.

2.8 Certification and compliance

Table 2-9

Mark/Approval	Certification					
	The CE marking (also known as CE mark) is a mandatory <u>conformance</u>					
	mark on many products placed on the single market in the European					
((Economic Area (EEA). The CE marking certifies that a product has met	Yes				
	EU consumer safety, health or environmental requirements. CE stands					
	for Conformité Européenne, "European conformity" in French.					
	FCC Part 15 Class B was used for Evolution of United States (US) Emission					
	Standards for Commercial Electronic Products, The United States (US)					
HC	covers all types of unintentional radiators under Subparts A and B	Yes				
	(Sections 15.1 through 15.199) of FCC 47 CFR Part 15, usually called just					
	FCC Part 15					




3.0 SATA SSD Pin Assignment

3.1 Pin Location

The following figure shows the pin location of the mSATA, the connector is with both signal and power segments.

3.2 Pin Assignment

There are total of 52 pin and the pin definitions are shown in Table 3-1

Table 3-1

Pin No.	Function	Description				
P1	Reserved	No Connect				
P2	+3.3V	3.3V Source				
Р3	Reserved	No Connect				
P4	GND	Return Current Path				
Р5	Reserved	No Connect				
P6	+1.5V	Not used in ATP design				
P7	Reserved	No Connect				
Р8	Reserved	No Connect				
Р9	GND	Return Current Path				
P10	Reserved	No Connect				
P11	Reserved	No Connect				
P12	Reserved	No Connect				
P13	Reserved	No Connect				
P14	Reserved	No Connect				
P15	GND	Return Current Path				
P16	Reserved	No Connect				
P17	Reserved	No Connect				
P18	GND	Return Current Path				
P19	Reserved	No Connect				

Version 1.0

P20ReservedNo ConnectP21GNDReturn Current PathP22ReservedNo ConnectP23+BHost Receiver Differential Signal PairP24+3.3V3.3V SourceP25-BHost Receiver Differential Signal PairP26GNDReturn Current PathP27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP38ReservedNo ConnectP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedNo ConnectP45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP designP48+1.5VNot used in ATP designP49DAS/DSSDevice A	Pin No.	Function	Description			
P22ReservedNo ConnectP23+BHost Receiver Differential Signal PairP24+3.3V3.3V SourceP25-BHost Receiver Differential Signal PairP26GNDReturn Current PathP27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedShall be a No ConnectP43ReservedShall be a No ConnectP43ReservedShall be a No ConnectP44ReservedNot used in ATP design ² P46ReservedNot used in ATP designP47VenderNot used in ATP design ² P46ReservedNot used in ATP designP47VenderNot used in ATP designP48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-up <td>P20</td> <td>Reserved</td> <td colspan="3">No Connect</td>	P20	Reserved	No Connect			
P23+BHost Receiver Differential Signal PairP24+3.3V3.3V SourceP25-BHost Receiver Differential Signal PairP26GNDReturn Current PathP27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No ConnectP44ReservedShall be a No ConnectP45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP designP48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohmP51venderShall be pulled to GND by a 0 ohm	P21	GND	Return Current Path			
P24+3.3V3.3V SourceP25-BHost Receiver Differential Signal PairP26GNDReturn Current PathP27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No ConnectP44ReservedShall be a No ConnectP45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP design ² P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹	P22	Reserved	No Connect			
P25-BHost Receiver Differential Signal PairP26GNDReturn Current PathP27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No ConnectP44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP designP48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohmP51PresenceShall be pulled to GND by a 0 ohm to 220 ohmP51PresenceShall be pulled to GND to metore ¹	P23	+B	Host Receiver Differential Signal Pair			
P26GNDReturn Current PathP27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No ConnectP45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP designP48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohmP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm	P24	+3.3V	3.3V Source			
P27GNDReturn Current PathP28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock ³ P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedShall be a No ConnectP45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP design ² P48+1.5VNot used in ATP design ² P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹	P25	-В	Host Receiver Differential Signal Pair			
P28+1.5VNot used in ATP designP29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock3P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data3P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices4P44ReservedNot used in ATP design 2P46ReservedNot used in ATP design 2P48+1.5VNot used in ATP design 2P48+1.5VNot used in ATP design 2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P26	GND	Return Current Path			
P29GNDReturn Current PathP30Two Wire InterfaceTwo Wire interface Clock3P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data3P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices4P44ReservedNot used in ATP design 2P45VenderNot used in ATP design 2P46ReservedNot used in ATP design 2P47VenderNot used in ATP design 2P48+1.5VNot used in ATP design 2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device4	P27	GND	Return Current Path			
P30Two Wire InterfaceTwo Wire interface Clock3P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data3P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices4P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design2P48+1.5VNot used in ATP design4P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51Detectionresistor on device3	P28	+1.5V	Not used in ATP design			
P30Two Wire interface Clock3P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data3P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No ConnectP45VenderNot used in ATP design2P46ReservedNo ConnectP47VenderNot used in ATP design2P48+1.5VNot used in ATP design2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51Detectionresistor on device3	P29	GND	Return Current Path			
P31-AHost Transmitter Differential Signal PairP32Two Wire InterfaceTwo Wire interface Data3P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices4P45VenderNot used in ATP design2P46ReservedNot used in ATP design2P48+1.5VNot used in ATP design2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device4	P30	Two Wire	Two Wire interface Clock ³			
P32Two Wire InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedShall be a No Connect on mSATA Devices ⁴ P45VenderNot used in ATP design ² P46ReservedNot used in ATP design ² P48+1.5VNot used in ATP design ² P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹		Interface				
P32InterfaceTwo Wire interface Data ³ P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices ⁴ P45VenderNot used in ATP design ² P46ReservedNot used in ATP design ² P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohmP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm	P31	-A	Host Transmitter Differential Signal Pair			
P33+AHost Transmitter Differential Signal PairP34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedNot used in ATP design ² P45VenderNot used in ATP design ² P46ReservedNot used in ATP designP47VenderNot used in ATP designP48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹	P32	Two Wire	Two Wire interface Data ³			
P34GNDReturn Current PathP35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedShall be a No Connect on mSATA Devices ⁴ P45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP design ² P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹		Interface				
P35GNDReturn Current PathP36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo Connect on mSATA Devices ⁴ P44ReservedShall be a No Connect on mSATA Devices ⁴ P45VenderNot used in ATP design 2P46ReservedNo ConnectP47VenderNot used in ATP design 2P48+1.5VNot used in ATP design 2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P33	+A	Host Transmitter Differential Signal Pair			
P36ReservedNo ConnectP37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedNo ConnectP44ReservedShall be a No Connect on mSATA Devices ⁴ P45VenderNot used in ATP design 2P46ReservedNot used in ATP design 2P47VenderNot used in ATP design 2P48+1.5VNot used in ATP design 2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P34	GND	Return Current Path			
P37GNDReturn Current PathP38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design 2P46ReservedNo ConnectP47VenderNot used in ATP design 2P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹	P35	GND	Return Current Path			
P38ReservedNo ConnectP39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedShall be a No Connect on mSATA Devices ⁴ P45VenderNot used in ATP design ² P46ReservedNo ConnectP47VenderNot used in ATP design ² P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device ¹	P36	Reserved	No Connect			
P39+3.3V3.3V SourceP40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No Connect on mSATA Devices ⁴ P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design 2P46ReservedNot connectP47VenderNot used in ATP design 2P48+1.5VNot used in ATP design 2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P37	GND	Return Current Path			
P40GNDReturn Current PathP41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No Connect on mSATA Devices4P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design2P46ReservedNo ConnectP47VenderNot used in ATP design2P48+1.5VNot used in ATP design2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P38	Reserved	No Connect			
P41+3.3V3.3V SourceP42ReservedNo ConnectP43ReservedShall be a No Connect on mSATA Devices4P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design2P46ReservedNot used in ATP design2P47VenderNot used in ATP design2P48+1.5VNot used in ATP design2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P39	+3.3V	3.3V Source			
P42ReservedNo ConnectP43ReservedShall be a No Connect on mSATA Devices4P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design2P46ReservedNot used in ATP design2P47VenderNot used in ATP design2P48+1.5VNot used in ATP design2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P40	GND	Return Current Path			
P43ReservedShall be a No Connect on mSATA Devices4P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design2P46ReservedNo ConnectP47VenderNot used in ATP design2P48+1.5VNot used in ATP design2P49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P41	+3.3V	3.3V Source			
P44ReservedEnter/Exit DevSleepP45VenderNot used in ATP design 2P46ReservedNo ConnectP47VenderNot used in ATP design 2P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P42	Reserved	No Connect			
P45VenderNot used in ATP design2P46ReservedNo ConnectP47VenderNot used in ATP design2P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P43	Reserved	Shall be a No Connect on mSATA Devices ⁴			
P46ReservedNo ConnectP47VenderNot used in ATP design 2P48+1.5VNot used in ATP designP49DAS/DSSDevice Activity Signal / Disable Staggered Spin-upP50GNDReturn Current PathP51PresenceShall be pulled to GND by a 0 ohm to 220 ohm resistor on device1	P44	Reserved	Enter/Exit DevSleep			
P47 Vender Not used in ATP design ² P48 +1.5V Not used in ATP design P49 DAS/DSS Device Activity Signal / Disable Staggered Spin-up P50 GND Return Current Path P51 Presence Shall be pulled to GND by a 0 ohm to 220 ohm P51 Option resistor on device ¹	P45	Vender	Not used in ATP design ²			
P48 +1.5V Not used in ATP design P49 DAS/DSS Device Activity Signal / Disable Staggered Spin-up P50 GND Return Current Path P51 Presence Shall be pulled to GND by a 0 ohm to 220 ohm P51 Detection resistor on device ¹	P46	Reserved	No Connect			
P49 DAS/DSS Device Activity Signal / Disable Staggered Spin-up P50 GND Return Current Path P51 Presence Shall be pulled to GND by a 0 ohm to 220 ohm P51 Detection resistor on device ¹	P47	Vender	Not used in ATP design ²			
P50 GND Return Current Path P51 Presence Shall be pulled to GND by a 0 ohm to 220 ohm Detection resistor on device ¹	P48	+1.5V	Not used in ATP design			
P51 Presence Shall be pulled to GND by a 0 ohm to 220 ohm Detection resistor on device ¹	P49	DAS/DSS	Device Activity Signal / Disable Staggered Spin-up			
P51 Detection resistor on device ¹	P50	GND	Return Current Path			
Detection resistor on device ¹		Presence	Shall be pulled to GND by a 0 ohm to 220 ohm			
P52 +3.3V 3.3V Source	P51	Detection	resistor on device ¹			
	P52	+3.3V	3.3V Source			

Notes:

1. Presence detection pin indicates presence of an mSATA device.

2. No connect on the host side.

3. Pins 30 and 32 are intended for use as a two wire interface to read a memory device to determine device information (an example of this would be for use as SMB bus pins). These pins are not designed to be active in conjunction with the SATA signal differential pairs. Not used in ATP design.

4. P43 to be a no connect on mSATA devices. Given that non-mSATA devices ground P43, configurable shared-socket designs may use this pin to identify mSATA and non-mSATA devices.

4.0 Command Set

4.1 ATA Command Set

ATP mSATA support the commands show in the following table

Table 4-1						
Command	Code	Protocol				
General Feature Set						
Execute Drive Diagnostic	90h	Device diagnostic				
Flush Cache	E7h	Non-data				
Flush Cache Ext	EAh	Non-data				
Identify Device	ECh	PIO data-in				
Initialize Drive Parameters	91h	Non-data				
Read DMA	C8h	DMA				
Read DMA Ext	25h	DMA				
Read Log Ext	2Fh	PIO data-in				
Read Multiple	C4h	PIO data-in				
Read Sector(s)	20h or 21h	PIO data-in				
Read Sector(s) Ext	24h	PIO data-in				
Read Verify Sector(s)	40h or 41h	Non-data				
Read Verify Sector(s) Ext	42h	Non-data				
Set Feature	EFh	Non-data				
Set Multiple Mode	C6h	Non-data				
Write DMA	CAh	DMA				
Write DMA Ext	35h	DMA				
Write DMA Fua Ext	3Dh	DMA				
Write Log Ext	3Fh	PIO data-out				
Write Multiple	C5h	PIO data-out				
Write Sector(s)	30h or 31h	PIO data-out				
Write Sector(s) Ext	34h	PIO data-out				

Table 4-1

ATP mSATA Embedded Module Specification

Version 1.0

NOP	00h	Non-data	
Read Buffer	E4h	PIO data-in	
Write Buffer	E8h	PIO data-out	
Data Set Management	06h	DMA PIO data-out	
Download Microcode	92h		
Power Management Feature Set			
Check Power Mode	E5h or 98h	Non-data	
Idle	E3h or 97h	Non-data	
Idle Immediate	E1h or 95h	Non-data	
Sleep	E6h or 99h	Non-data	
Standby	E2h or 96h	Non-data	
Standby Immediate	E0h or 94h	Non-data	
Security Mode Feature Set			
Security Set Password	F1h	PIO data-out	
Security Unlock	F2h	PIO data-out	
Security Erase Prepare	F3h	Non-data	
Security Erase Unit	F4h	PIO data-out	
Security Freeze Lock	F5h	Non-data	
Security Disable Password	F6h	PIO data-out	
SMART Feature Set			
SMART Disable Operation	B0h	Non-data	
SMART Enable/Disable Autosave	B0h	Non-data	
SMART Enable Operations	B0h	Non-data	
SMART Return Status	B0h	Non-data	
SMART Execute Off-Line Immediate	B0h	Non-data	
SMART Read Data	B0h	PIO data-in	
SMART Read Threshold	B0h	PIO data-in	
SMART Read Log	B0h	PIO data-in	
SMART Write Log	B0h	PIO data-out	
SMART Save Attribute Values	B0h	Non-data	
Host Protected Area Feature Set			
Read Native Max Address	F8h	Non-data	
Read Native Max Address Ext	27h	Non-data	
Set Max Address	F9h	Non-data	
Set Max Address Ext	37h	Non-data	
Set Max Set Password	F9h	PIO data-out	
Set Max Lock	F9h	Non-data	

ATP Confidential © ATP Electronics, Inc.

Version 1.0

Set Max Freeze Lock	F9h	Non-data	
Set Max Unlock	F9h	PIO data-out	

4.2 Identity Device Data

-	Table 4-2						
Word Address	Default Value	Data Field Type Information					
0	0040h	General Configuration					
1	XXXXh	Default number of cylinders					
2	0000h	Reserved					
3	00XXh	Default number of heads					
4	0000h	Obsolete					
5	0240h	Obsolete					
6	XXXXh	Default number of sectors per track					
7-8	XXXXh	Number of sectors per card (Word 7 = MSW, Word 8 = LSW)					
9	0000h	Obsolete					
10-19	XXXXh	Serial number in ASCII (Left justified) with 12 or less characters					
20	0002h	Obsolete					
21	0002h	Obsolete					
22	0000h	Obsolete					
23-26	XXXXh	Firmware revision in ASCII (Left justified). Big Endian Byte Order in Word					
27-41	XXXXh	Model number in ASCII (Left justified). Big Endian Byte Order in Word					
42~46		Part number in ASCII (Right justified) preceded by the ANSI space character					
47	8001h	Maximum number of sectors on Read/Write Multiple command					
48	0000h	Reserved					
49	0F00h	Capabilities					
50	4000h	Capabilities					
51	0200h	PIO data transfer cycle timing mode					
52	0000h	Obsolete					
53	0007h	Field validity					
54	XXXXh	Current numbers of cylinders					
55	XXXXh	Current numbers of heads					
56	XXXXh	Current sectors per track					

Ve	rsion	1.0
• •	101011	±.0

57-58	XXXXh	Current capacity in sectors (LBAs) (Word57=LSW, Word58=MSW)			
59	0101h	Multiple sector setting			
60.64		Total number of user addressable logical sectors for 28-bit			
60-61	XXXXh	commands (DWord)			
62	0000h	Reserved			
62	0207h	Multiword DMA transfer			
63	0207h	Supports MDMA Mode 0, 1, and 2			
64	0003h	Advanced PIO modes supported			
65	0078h	Minimum Multiword DMA transfer cycle time per word			
66	0078h	Recommended Multiword DMA transfer cycle time			
67	0078h	Minimum PIO transfer cycle time without flow control			
68	0078h	Minimum PIO transfer cycle time with IORDY flow control			
69	4000h	Additional supported			
70~74	0000h	Reserved			
75	0031	Queue depth			
		Serial ATA capabilities			
		Support Serial ATA Gen1			
		Support Serial ATA Gen2			
76	030E	Support Serial ATA Gen3			
70	0301	Supports Phy event counters log			
		Support receipt of host-initiated interface power management			
		requests			
		Supports Native Command Queuing			
77	0080h	Serial ATA additional capability			
	008011	DevSleep_to_ReducedPwerState			
		Serial ATA features supported			
78	044C	Supports Device Sleep			
/0	0440	Supports software settings preservation			
		Device supports initiating power management			
79	0040h	Reserved			
80	03F0h	Major version number (ACS-2)			
81	0000h	Minor version number			
82	742Bh	Command sets supported 0			
83	7500h	Command sets supported 1			
84	4023h	Command sets supported 2			
85~87	XXXXh	Command set/feature enabled			
88	007Fh	Ultra DMA supported and selected			

Version 1.0

89	0003h	Time required for Normal Erase mode Security Erase Unit				
05	000511	command				
90	0001h	Time required for Enhanced Erase mode Security Erase Unit				
50	000111	command				
91	0000h	Current advanced power management value				
92	FFFEh	Master password identifier				
93~99	0000h	Reserved				
100~103	XXXXh	Maximum user LBA for 48-bit address feature set				
104	0000h	Reserved				
105	0100h	Maximum number of 512-byte blocks per Data Set Management				
105	010011	command				
		bit 12 = 1 to indicate that the Logical Sector Size field is valid				
106	5000	Bit 14 = 1				
		Bit 15 = 0				
107~116	0000h	Reserved				
117~118	0x800	Logical sector size				
119~127	0000h	Reserved				
128	0001h	Security status				
129~159	XXXXh	Vendor specific				
160	0000h	Power requirement description				
161	0000h	Reserved				
162	0000h	Key management schemes supported				
163	0000h	CF Advanced True IDE Timing Mode Capability and Setting				
164~168	0000h	Reserved				
169	0001h	Data Set Management supported				
170~216	XXXXh	Reserved				
217	0001h	Non-rotating media(SSD)				
218~221	0000h	Reserved				
222	107Fh	Transport major revision (SATA Rev 3.1)				
223~254	0000h	Reserved				
255	XXXXh	Integrity word				

4.3 Smart Information

ATP mSATA supports S.M.A.R.T. ATA feature set in IDE mode, AHCI mode, not support in RAID mode.

4.3.1 Smart Subcommand Sets

In order to select a subcommand the host must write the subcommand code to the device's

Features Register before issuing the SMART Function Set command. The subcommands are

listed below.

Command	Command Code
SMART READ DATA	D0h
SMART READ ATTRIBUTE THRESHOLD	D1h
SMART ENABLE/DISABLE AUTOSAVE	D2h
SMART SAVE ATTRIBUTE VALUES	D3h
SMART EXECUTE OFF-LINE IMMIDIATE	D4h
READ LOG	D5h
WRITE LOG	D6h
SMART ENABLE OPERATIONS	D8h
SMART DISABLE OPERATIONS	D9h
SMART RETURN STATUS	DAh

Table 4-3

Note: If the reserved size is below a threshold, status can be read from the Cylinder Register using the Return Status command (DAh)

4.3.2 SMART Read Data (Subcommand Doh)

The following 512 bytes make up the device SMART data structure. Users can obtain the data using the "Read Data" command (D0h).

Byte	F/V	Description				
0~1	Х	Revision code				
2~361	Х	Vendor Specific				
362	V	Off-line data collection status				
363	Х	Self-test execution status byte				
364~365 V		Total time in seconds to complete off-line data collection activity				

Table 4-4

366	Х	Vendor Specific			
367	F	Off-line data collection capability			
368~369	F	SMART capability			
		Error logging capability:			
370	F	7-1 = Reserved			
		0 -1 = Device error logging supported			
371	Х	Vendor Specific			
372	F	Short self-test routine recommended polling time			
572	-	(in minutes)			
373	F	Extended self-test routine recommended polling time			
575	-	(in minutes)			
374	F	Conveyance self-test routine recommended polling time			
574		(in minutes)			
375~385	R	Reserved			
386~395	F	Firmware Version/Date Code			
396~397	F	Reserved			
398~399	F	Reserved			
400~408	F	SMI2246EN			
409~415	Х	Vendor specific			
416	F	Reserved			
417	F	Program/write the strong page only			
418~419	V	Number of spare block			
420~423	V	Average erase count			
424~510	Х	Vendor Specific			
511	V	Data structure checksum			

Notes:

1. F=content (byte) is fixed and does not change

2. V=content (byte) is variable and maybe change depending on the state of the device or the command executed by the device

3. X= content (byte) is vendor specific and maybe fixed or variable

4. R=content (byte) is reserved and shall be zero

4.3.3 SMART Attribute

The following table defines the vendor specific data in byte 2 to 361 of the 512-byte SMART data.

ID	Value (hex)		Ra	aw A	ttribut	e Valu	Ie		Attribute Name
1	01	LSB	MSB	0	0	0	0	0	Raw Read Error Count (0x01)
5	05	LSB	MSB	0	0	0	0	0	Reallocated Sectors Count
9	09	LSB			MSB	0	0	0	Power On Hours (0x09)
12	0C	LSB			MSB	0	0	0	Normal Power On/Off count
14	0E	LSB			MSB	0	0	0	Device Physical Capacity (0x0E)
15	OF	LSB			MSB	0	0		Device User Capacity (0x0F)
16	10	LSB	MSB	0	0	0	0	0	Initial Spare blocks (0x10)
17	11	LSB	MSB	0	0	0	0	0	Remaining Spare Blocks at Current Time (0x11)
100	64	LSB			MSB	0	0	0	Total Erase Count
160	A0	LSB			MSB	0	0	0	Uncorrectable Sector Count When Read/Write
172	AC	LSB	MSB	0	0	0	0	0	Total Block Erase Failure (0xAC)
173	AD	LSB			MSB	0	0	0	Maximum Erase Count (0xAD)
174	AE	LSB			MSB	0	0	0	Unexpected Power Loss Count
175	AF	LSB			MSB	0	0	0	Average Erase Count
181	B5	LSB			MSB	0	0	0	Total Block Program Failure

Table 4-5

ID	Value (hex)	Raw Attribute Value							Attribute Name
187	BB	LSB			MSB	0	0	0	Reported Uncorrectable Errors (0xBB)
194	C2	LSB MSB	0	0	0	0	0	0	Device Temperature (0xC2)
195	C3	LSB			MSB	0	0	0	Hardware ECC Recovered
197	C5	LSB MSB	0	0	0	0	0	0	Current Pending Block Count (0xC5)
198	C6	LSB			MSB	0	0	0	Offline Surface Scan (0xC6)
199	C7	LSB	MSB	0	0	0	0	0	SATA FIS CRC Errors
202	CA	LSB			MSB	0	0	0	Percentage of Drive Life Used
205	CD	LSB			MSB	0	0	0	Thermal Asperity Rate (TAR)
231	E7	LSB MSB	0	0	0	0	0	0	Controller Temperature
234	EA	LSB						MSB	Total Bytes Read from NAND Flash
235	EB	LSB						MSB	Total Host Bytes/Sectors Written to Device
241	F1	LSB						MSB	Total Nand Bytes/Sectors Written to NAND Flash
242	F2	LSB						MSB	Total Bytes Read from Device (32MB/unit)
248	F8	LSB MSB	0	0	0	0	0	0	Remaining Life %
249	F9	LSB MSB	0	0	0	0	0	0	Spare Block Remaining

4.4 SMART Command Transport

Table 4-6

Action Code (hex)	Description					
0003h	Error recovery control (the time needed to recover)					
0004h	Features control					
0005h	SCT data tables					

4.5 Set Features

Table 4-7						
Value (hex)	Description					
2	Enable write cache					
66	Disable reverting to Power-On defaults					
82	Disable write cache					
CC	Enable reverting to Power-On defaults					

5.0 Mechanical Information

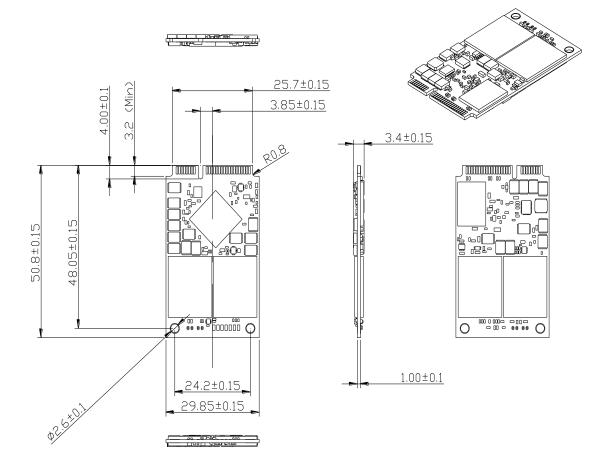

5.1 Physical Dimension Specifications

Table 5-1

Туре		Value		
	Length	50.80 mm +/- 0.15mm 29.85 mm +/- 0.15 mm		
mSATA	Width			
	Thickness	3.40 mm +/- 0.15mm		

5.2 Mechanical Form Factor (Units in mm)

ATP TAIWAN(HQ) TEL: +886-2-2659-6368 FAX: +886-2-2659-4982 sales-apac@atpinc.com ATP USA TEL: +1-408-732-5000 FAX: +1-408-732-5055 sales@atpinc.com ATP JAPAN TEL: +81-03-6206-8097 FAX: +81-03-6206-8098 sales-japan@atpinc.com ATP EUROPE TEL: +49-89-374-9999-0 FAX: +49-89-374-9999-29 sales-europe@atpinc.com ATP CHINA

TEL: +86-21-5080-2220 FAX: +86-21-5080-2219 sales@cn.atpinc.com

www.atpinc.com